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Linear Control Processes and Mathematical Programming 

by George B.   Dantzlg 

Linear Control Process Defined [1],   [2]; 

We shall consider an "object" defined by Its n + 1 

coordinates x » (x0, x-,...fx )  v#hose "motion" described as 
« 

a function of a parameter "time"  (t)  can be written as a 

linear system of differential equations: 

(1) If-A^ + B^ 

where A , B are known matrices that may depend on t and 

u - (u., u2,...,u ) is a control vector that must be chosen 

from a convex set, u € U(t) for every 0 < t < T. The time 

period 0 < t < T is fixed and known in advance. The coor- 

dinate XQ » ^("t) represents the "cost" of moving the object 

from its initial position to x^t). For this purpose it may 

be assumed that x0(0) - 0. Defining 

(2) x - (0, Xj, x2,...,xn) 

the object is required to start somewhere in a convex domain 

x(0) € S0 and to terminate at t = T somewhere on another 

convex domain x(T)  € S™. 

Problem;    Find u € U(t) and boundary values x(0)  e S0, 

x(T)  e S«,  such that x0(T)  is minimized. 

Assuming u e U(t)  is known,  the system of differential 
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equations can be Integrated to yield an expression for X(T) 

In terms of X{0) and u e U(t). This Is true In general but 

will be Illustrated for the case when A and B do not depend 

on t; In this case 

(3)     X(T) = eTAX(0) + PTe(T-t)AB u(t)dt 

where u(t) e U(t) Is a convex set and where we assume the 

Integral exists whatever be the choice of the u(t) € U(t) 

for 0 < t < T. 

Generalized Linear Program [3]'- 

Our general objective Is to Illustrate how mathematical 

programming and.  In particular, how the decomposition principle 

in the form of the generalized linear program can be applied 

to this class of problems.    An elegant constructive theory 

emerges,  [k], 

A generalized linear program differs from a standard 

linear program in that the vector of coefficients,  say P, 

associated tyith any variable \i need not be constant but can 

be selected from a convex set C.    For example: 

Problem; Find Max X, ji > 0 such that 

W V  + ^ = % 

where U0, Qu are specified vectors and P e C 

convex. 
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The method of solution assumes vie have Initially on hand 

m particular choices P. € C with the property that 

(5)     V +Plh + P2n2 +...+Pm^ = % 

h + ^2  +*--+ ^V = 1 

has a unique "feasible" solution;  that Is to say X  = X    , 

^i * ^1 — 0 and the matrix 

(6) B0 rU0      P1   '••   Pm] 
^ 0 1   ...     1  J 

is non-singular (i.e.  the columns of B    form a basis). Because 

?^ € C,  the vector P   = S P^? constitutes a solution P = P 

for {k)  except that X. = X    may not yield the maximal X- 

To test whether or not P    is an optimal solution one 

determines a row vector rf = TT    such that 

(7) n0B0 = (1, 0,...,0) 

and then a value 6 and a vector P_,, e C such that 
m+i. 

(8)      6 - w0PB+1 > gig Ä
0P 

where we denote 

This is not a restrictive assumption since there is an 
analogous method for obtaining such a starting solution, see [k]. 
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(9)     P=[f] 
0 

If it turns out that 6=0, then P = P is an optimal solution. 

If P is not optimal, system (5) is augmented by P-. 1 • 

After one or several iterations k the augmented system takes 

the form of a linear program: 

Problem:      Find Max \,  fA1 > 0 

m+k 

do) W+lhHm<*o 
i 

m+k 

1 
Jr 

Letting B denote the basis associated with an optimal basic 
k k 

feasible solution \i*  = ^ to (10), TT is defined analogous 

to (7) and 6   and Pm+k+i analogous to (8). If it turns 

out that 6=0, the solution 

m+k 

i*.I (ii)      P^ZP^I 

is optimal.    If not the system is augmented by P-.^a-i »nd 

the iterative process is repeated. 

It is known under certain general conditions such as C 

bounded and the initial solution is non-degenerate (i.e. ji^O), 
k      -* _k        * \      ♦ that TT   -»TT    and P^ -> P   on some subsequence k and that P » P 

_* 
is optimal.    The two fundamental properties of YT   are 

(12) n* ^ 0 and TT*? > TT*P* - 0 for all P € C. 
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The entire process can be considered as constructive 

providing It Is not difficult to compute the various P-LU.< 

from (8) with TT ■ TT  . Another point Is that the Iterative 

process terminates In a finite number of steps If C Is a 

convex polyhedral set and P-.i. constitute extreme solutions 

from It. In all cases an estimate Is available on how close 

the k  solution Is to an optimal value of \. 

Application of the Generalized Program to the Linear Control Process; 

Let us denote 

(13) P = J e(T't)AB u{t)dt 
0 

and note that P Is an element of a convex set C    generated 

by choosing all possible u(t)  e U(t).    We specify that 

U0 - (1, 0,...,0), and denote by X = -x0(Th where X0(T) 

is the coordinate of X(T)   to be minimized.    Then 

ilk) X(T)   = -U0X  + X{T) 

We further define QQ  by 

(15)        X(T) = eTAX(0) + %  . 

Substitution of these into (3) formally converts the 

integrated form of the control problem into a generalized 

linear program (k). 

3 
Actually QU  is not given but is an element of a convex set. 
To simplify the discussion which follows we assume (L.  is 
a fixed vector. 
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Each cycle of the iterative process yields a known row 

vector,  which we partition 

(16) nk41 = [TT ,  0] 

where TT represents it first n + 1   components corresponding 

to P and Ö its last component.     Since TT is known,  our choice 

for Wi, is 

TT^lrxl    =   Min   U    TT   e(T"t)AB   U(t)dt) ^r7^ "^m+k+l !0 

= J       JMin TT e(T"t)A3 u(t)l  dt 
0       lu€U(t) j 

where clearly the minimum is obtained when, in (16),  the 

integrand for each t is selected to be minimum. 

Note that 

(18) (*+  = TT e^S 
v ,TT 

is a row vector that can be computed for each t. For example, 

^+  can be represented by a finite sum of vectors whose 
u ,1T 

weights depend on t and the eigen values of A. The new 

extremal solution Pm+fc+1 is obtained by choosing the control 

which minimizes the linear form in u for each t ; i.e., find 

(19) Min(0+ u) , u e U(t) . 

For example if U(t) is a polyhedral set then (19) is a linear 

program. If U(t) is the same for all t , then only the 
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objective form, 0.    u , varies for different t ; except for 

the objective form the linear programs are the same for all t . 

If optimal TT Is used, then the optimal control u (except 

for a set of measure zero) satisfies 

(20) Mln[^*(t)u]  , u € U(t) 

where 0  (t) = TT e^ "t^AB . Pontryagln refers to this as 

the maximal principle. It is, as we have Just shown, also 

a consequence of the decomposition principle of linear program- 

ming. 

Conclusion: 

In our approach the general control obtained for each 

cycle Is a linear combination of exactly n+1 special controls 

obtained by minimizing for each t, the linear expression (19) 

in u for n+1 choices of n .  These special controls may be 

referred to as extreme controls. The latter each in themselves 

do not maintain feasibility, that is to say guarantee that 

the object will move from X(o) to X(T). Each new linear 

combination of these special controls will, however, gener- 

ate a new feasible control with a lower valueJ for the total 

cost X0(T). Under conditions stated this iterative process 

is known to converge. 

_  
J    If basic solution is non-degenerate. 
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The Lurle Problem On Nonlinear Controls 

by Solomon Lefschetz 

Some twenty five years ago the mathematical world was presented 

by the distinguished mathematical engineer Anatole Lurle [ 1 ] with a 

set of nonlinear control differential equations of great generality. 

In compact vector-matrix form [2]  (with an improvement due to Malkln, 

Lefschetz and V.  M.  Popov)   the system looked like this: 

Ax - by(CT) 

(1) 

{x     «AX  - by^( 

5    - 9(0) 
9    - c'x - Y5 

The initial uncontrolled system is 

(1«)       x = Ax 

The notations are; x,  b, c are n-vectors; A is a constant n x n 

matrix; greek letters represent scalars. n(a) is the characteristic 

of the control and one assumes these properties: M IS continuous for 
a 

all 9i    ^(0) ■ 0, o ^(o) > 0 for a ^ 0; #(ff) » f y{o)&a  (which is positive 

for 9 jt 0)-»+ • with |o|. 

The vector x is the state vector; b,c,Y are the control para- 

meters; 5 is a control variable. 

Roughly speaking assuming that the normal position for x is 

x « 0* given small deviations of x one hopes that by imbedding the 

system (l1) into a suitable system (l) one makes (x,0 -»0 hence x -* 0 

as t -> + », mathematically speaking in Lurle' s monograph there is 

-11- 
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imbedded the following question now going by his name as 

Lurie's problem. To find n.a.s.c. that the parameters b, c, y, 

must satisfy in order that all solutions of (l) be asymptotically 

stable in the large whatever the choice of an admissible function n(o). 

This is absolute stability. 

This is the problem that I propose to discuss as a mathematical 

problem. Regarding its practical (R and D) value I must accept the 

evidence that a number of outstanding mathematical engineers have 

"lovingly" dealt with the problem; 

Almost all the work done on the Lurie problem is an application 

of a fundamental theorem due to Piapunov plus a noteworthy complement 

due to Barbashin and Krassovskii - lumped in what I will refer to as 

the L.B.K. Theorem — together with a highly significant observation 

made by J.P. LaSalle [3]. 1  must first describe these basic ideas. 

The L.B.K. Theorem. Let 

(2) u =U(u),  U(0)  =0, 

(u, are n-vectors) be a real system, of dass C throughout the whole 

n space. A sufficient condition in order that every solution u(t) of 

(2) -»0ast-»+«ls the existence of a scalar function V(u) of 

class C for all u with these properties 

(a) V{u) is positive definite for all u[> 0 for u j* 0, 

V(0) = 0]; 

(b) V(u)-» + «0 with Mu| I (Barbashin-Krassovskii complement); 

(c) since V is of class C for all u one may determine 

dV(u(t))/dt = V(u) along every solution u(t) of (2) 

-12- 



and one must have v(u) < 0 on every solution except 

u = 0. 

(Class C :  the function f(u) = f(u. ,...,u ) Is of class C 

for all u if all the partials df/du  exist and are continuous for all 

u.) 

We state LaSalle's complement as restricted to our "control" 

situation and merely remark that it has a much larger range of appli- 

cation. 

.-^-£aSalle's complement. The L.B.K. Theorem still holds with 

V > 0 replaced b£ V < 0 under the condition that the set V = 0 contains 

no other solution than u = 0. 

Observation about Lurie's system. There are actually two 

distinct situations corresponding to y ^ 0 *&& y = 0. 

I. y y' The larger system is of dimension n + 1. This is 

Indirect control. Its practical significance is that it operates 

through derivatives and hence makes possible use of a smaller, less 

heavy mechanism than the initial system: Minorsky' s derivative con- 

trol initiated this method. 

II, Y - 0: direct control. The order of the system is un- 

changed. Actually in this case 5 plays no role and the true system 

is 

(3)      x = Ax - b^c'x). 

That i% controlling is obtained by adding a nonlinear part to the system. 

Now if one assimilates (x,;) to the system variable Lurie*s 

initial equation becomes 
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^ fx - Ax - bcoCc'x - Y?) 

U = »(c'x - Y?) 

which is like (3) but with A replaced by (*'  ?]  that is by a (nec- 

essarily) singular matrix. This has led many authors to consider (3) 

as the main system. Be as it may we will confine most of our dis- 

cussion to (l) and indirect control (y ^ 0). 

Linearization. At all events if absolute stability is to be 

obtained the system will have to be at least asymptotically stable 

when ^(o) = |ia, u > 0. It will then become linear and asymptotic 

stability will merely demand stability of the coefficient matrix. 

This attack was first persued and with full success by Yacubovich [5j. 

It is actually easier to deal first with the direct control (3). Hie 

linearized system is 

(4')      x = (A - ubc^x 

and so the matrix A - übe' must only have characteristic roots with 

negative real parts. The characteristic equation is (zE - A + nbc'y 

= 0 (E:  unit matrix). If E_ - A ■ Aw ■ characteristic matrix of A, z z 
the relation becomes   |A    + jibc'l =0.    A simple algebraic manipula- 

tion reduces this to the equivalent form 

1  + liCA^b « 0 

Rather simple complex analysis yields the following results: 

I. No characteristic root of A may lie to the right of the 

complex axis. Those on the complex axis must be at most double. 

-14- 
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II. Same result for Indirect control save that the root z ■ 0 

must be at most simple. 

III. Sufficient conditions for the asymptotic stability of the 

linearized indirect control for small \x  are: A stable and y > 0. 

The preceding properties point out the relative simplicity of an in- 

direct control with A stable (perhaps only feebly so).  This is the 

situation that we propose to face in the general case. As a first step 

and since 9  is the variable appearing in ^(a) it is convenient to re- 

place by a the independent variable 5 of (l). This is done with ease 

and yields the equivalent system 

« 

{x - Ax - by(a) 

a - c'Ax - ptpie) 

p  » c'b + y 

Absolute stability- suggests recourse to the L.B.K. Theorem. A rather 

simple form of Llapunov function is obtained (from a generalization of 

one due to Lurie-Poshukov in the late forties) as 

(6) V(x,a) - x'Bx + #(a) 

where the first term is a positive definite quadratic form that is 

B is a constant symmetric matrix symbolically described by B > 0. 

Thus V behaves in accordance, with the L.B.K. Theorem. Then we find 

(7) -v = x'Cx + 2d'x^ + py2 

-15- 



(8)        -C = A'B + BA 

1 d = Bb  - i A' c 

One wishes to have -V > 0 for all x,o and not both zero. This re- 

quires that C > 0. An early result of Llapunov asserts that given 

C > 0, there Is a unique B solution of (8) and B > 0. Thus we merely 

need to remember C > 0. 

Observing now that (7) Is a quadratic form In the variables 

x,9 absolute stability will be achieved If one makes It positive de- 

finite In these variables. This may be expressed through two distinct 

modes of completing sequences. 

(a) by leaving 9    unchanged yielding the author's condition 

(9)      p > d'C"1d  (hence p > 0); 

(b) by modifying a   alone — as done by Yacubovlch — leading 

to these conditions: 

ho)    fo > Oi existence of a B such that fp > 0;    exlster 

|A'B + BA + — < 0. 

Thus one may state. 

Theorem.    N.a.s.c.  to have V,V   satisfy the L.B.K. Theorem are equi- 

valently    {C>0,(9)}    or    (10).    when this happens the system (l) 

(or 5)  Iß absolutely stable. 

We come now to the work of V.M. Popov [6] beyond doubt the most 

significant contribution to the Lurle problem since Lurle.    The system 

-16- 
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dealt with Is the Indirect control (1) and the assumption continues to 

be that A Is stable and y > 0.    Popov proves two central theorems. 

Stated with Insignificant deviations from Popov they are: 

Iheorem I. A sufficient condition for the absolute stabil- 

ity of the indirect control {1) jLs the existence of two constants 

a > 0, f > 0 such that for all real tu 

(11)      Re{(2o Y + IweHc'A-h) + ^J)) > 0 

We describe {  } = P(a,e,u)) as the Popov function. 

Ifoeorem II« If absolute stability is determined by a Liapunov 

function of type "quadratic form In x, a plus 01 (o)" then the pre- 

ceding täieorem holds with this 0 and a suitable a (a maybe zero). 

Actually Popov showed that the Liapunov function of Theorem II 

must have the form 

V(x,o) = x'Bx + a(ff - c'x)2 + 0*(o) 

where a, $  are those which appear in the Popov function. 

The state of Theorem I does not bring out the essential simpli- 

city of the result. It is of special interest when a ^ 0. Setting 

there -£-   - q, one may replace P by P(q,(i)) = (l+iwq) (c'A^jb + -jj) = 

it+imq}lS^im)  + IS^d«)). 

Hence (11) becomes 

S^u)) - quiSgd«) > 0. 

This means that in the real x, y plane the curve 

-17- 
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r : x = S^«)),  y = (MS2(U)) 

has a tangent y = qx through the origin In quadrants 1, 3 and is 

otherwise below that tangent. Since the functions S,(u)), S-iw)  are 

rational (hence r is a unicursal curve) the discovery of a tangent 

such as y = qx is a rather simple matter — much simpler than finding 

matrices C or B of our earlier conditions« 

Open problem as yet unsolved:  Is the Popov condition (ll) 

necessary for absolute stability? 

Remark about Popov' s striking proof of Theorem I« It passed 

up Liapunov functions and replaced them by very advanced Fourier in- 

tegral technique.  Curiously a transfer function« 4 la linear theory, 

makes its appearance in the inequality (ll). For Popov's function 

may be written 

(2aY + pzKe'A^b +|)]z = I« 

and 

T(2) = c'A'1 b + X 

is the transfer function ^(a(t)) to a(t) in (5).. 

From an R 4 D viewpoint a "sufficient conditlQn" such as In      f 

Theorem I is definitely more important than a necessary one, The latter 

is perhaps more important as mathematics that as R * D information. It 

may be added also that the proof of Theorem II is far easier and 

simplier than that of Theorem I. 

-18- 
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Hardly had Popov's expression (ll) appeared on the scene, than 

a number of analogous results began to appear. They always Involved 

seme pair, V, V and In principle proceeded along much simpler lines 

than Popov's first theorem. We will Just describe one very interesting 

result embodying a noted lemma of Yacubovlch [7.1 strongly Improved by 

Kaiman [8] and still further advanced by Kenneth Meyer [9]. We will 

refer to It as the Y.K.M. lemma (Meyer's version with parts omitted.) 

The Y.K.M. Lemma. Assume A stable and let b, k, be real 

n-vectors and T a non-negative constant. If 

T + 2 Re k' A^ b > 0 

for all real w then there exist two n x n matrices B > 0, D > 0, and 

a real n-vector q such that 

A'B + Ba = -qq'  - D 

Bb  -  k - T* q. 

The lenma with "> 0" rather than "> 0" was proved by Yacubovlch. Under 

the special assumption of complete controllability of (A,b) and complete 

observability of (A',c) it was extended (with new proofs) by Kaiman. 

The complete controllability and observability conditions were recently 

removed by Kenneth Meyer. 

If one takes 

K » ijß A'c + aye,    T 0 0p = ßv + C'b 

then the inequality of the lemma reduces to Popov' s Inequality (11). 

-19- 
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One has then this result of Yacubovich and Kaiman: 

Theorem.  Popov's Inequality with 

(a) a > 0, ß > 0, a + ß > 0 

(b) T > 0 or T = 0, ^ pA'c + aye = 0,  a > 0 

are n.a.s.c.  for the existence of the Llapunov function of the second 

theorem with merely    - V > 0. 

Beyond the Lemma and under certain complicated complementary 

conditions given by Kaiman one may show, using LaSalle's complement« 

that absolute stability Is achieved. 

If one takes Popov's Inequality strictly as > 0 one may show 

that V and -V are both positive definite and hence, one has absolute 

stability. 

Noteworthy work has been done recently by the mathematical 

engineer R. W. Brockett and his young associates (see[7])*    Let p(D), 

q(D)  be real polynomials of respective degrees n and at most n-1  in 

D = -jx .    With y(a) as before the general problem which they have at- 

tacked is the scalar real differential equation 

(12) p(D)x + y(a)   =0,    a = q(D)x. 

and its absolute stability. 

A description of one of his results — his Theorem k — will 

give an idea of his general procedure. 

Theorem. Let p(D) = Dh(^), where all solutions of h(D)z » 0 

are asymptotically stable. Then if there exists an r > 0 such that 

-20- 
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m(z) - (l+rz)q(z)/p(z) has the property Re m(z) > 0 when Re z > 0, 

(12) Is absolutely stable. 

To Indicate the nature of Brockett's Liapunov function for this 

case we need a few special notations. 

(a) If g(z) Is a polynomial let g0(z) denote the polynomial 

made up of Its even terms; 

(b) If g(z) Is real, even, and such that 3(1«)) > 0 for all 

real w, then (Wiener) g(z)" = k(z)k(-z), k(z) ^0 when Re z ^0.  Set 

g(z) - k(-z); 

(c) denote by X the real vector* whose components are x(t), 

i(t), xCt),...^11-1^). 

With Integration In the space of X the form of Liapunov func- 

tion given by Brockett Is 

t(X) - N2 V(X) = f ' ■((a+ßD)q(D)z-p(D)z + ((a - e(l))q(-D)p(D))"z) 
MO) 

+ pDq(D)zf(q(D)z))dt 

One may show that V Is positive definite, V negative seml-deflnlte for 

all admissible ^p, then using LaSalle's complement one proves absolute 

stability. Technique of similar nature has been used, notably by 

Willems In an  Investigation of more restricted functions qp(a): of a 

differentlable monotone Increasing ^(a). It may be pointed out that 

the first term of the expression for V(X) (term without y) Is essentially 

a quadratic form In X while the second term is really the same as the 

term ft (a) of the earlier Liapunov functions. 

-21- 
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A number of authors have Investigated an admissible class of 

characteristic functions 9(0) limited by an additional Inequality 

0 < *!£' < X (finite). This has been dealt with at length in the 
a 

recent book [8] by Alzerman and Gantmacher, which Incidentally contains 

a very extensive bibliography. The Popov expression (ll) is replaced 

by 

P(a, 0, u),X) = P(a, 0, t») + ^ . 

The modifications for indirect control are moderate, but not so for 

direct control, which require replacing the pair (V, V) by (V,W) 

where W is a more restricted function then V, and depends largely 

on X. 
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A 

The Bang-Bang Principle 

by Lawrence Markus 

1. The physical significance of the bang-bang principle. The 

bang-bang principle states that any response of a controlled 

system, which can be achieved by an arbitrary controller 

varying ovtr the total control domain, can equally well be 

achieved by a controller which Is restricted to the extreme 

values of the control domain. The term "bang-bang" refers to 

the abrupt switching of the controller frcm one of these 

extreme values to another. In engineering design It Is often 

simpler to construct a control device with only a finite 

number of positions (say, the vertices of a polyhedron) rather 

than a continuum of possible positions (say, all the points 

of the solid polyhedron), and Jience the bang-bang principle 

Is of great practical Importance - when It Is applicable. 

The bang-bang principle Is not Just a general principle 

but It Is, In fact, a collection of precise mathematical theorems 

which center around a single physical concept. The basic 

mathematical result was obtained In relatively recent times 

(19^0) by the Soviet scientist A. Llapounov [19], who thereby 

Injected a new method - and also a new Llapounov - Into 

control studies. The Immediate application to control theory 

was presented by J. LaSalle [16] In a fundamental paper In 
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1960. Since that time a great deal of research has dereloped 

the applications of the hang-bang principle to control problems9 

both linear and nonlinear. 

As a simple physical control process consider the mechanics 

of rowing a small boat across a smooth lake. The controlling 

force is produced by the two oars and the response is the 

heading and movement of the boat. If both oars are pulled 

simultaneously with equal force, the boat adrances in a 

fixed direction. The direction can be changed in z  controlled 

manner by using the oars together with each stroke but pulling 

one oar more strongly than the other. By controlling the 

difference in strength of the two oars, a continuum of control 

possibilities arises. 

Now consider the same boat controlled by "bang-bang 

rowing". Here the oars act independently, but always with the 

fixed maximal pulling strength. The control in direction is 

effected by using one oar more frequently than the other« 

Thus the control force with each rowing stroke is always on« 

of two extreme values (maximal right or maximal left), but 

any required heading of the boat can be achieved, even if not 

as smoothly as before. 

Thus in the bang-bang control we replace a spatial 

variation of the controlling force (the resultant rowing, 

stroke can range over a continuum of angular directions) by 

a temporal variation of the controlling fores (the freque&oiss 
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of left and rigtt oar strokes).    From this viewpoint the bang- 

bang principle reseables ergodic theory» although no precise 

interconnection is known relating these two disciplines. 

2«    Thm bamt-bang principle for linear processes.    Consider 

VM first order rector differential systen, or control process, 

X)    t « Ax + Bu . 

Here x(t) is the real n-diaensional state vector at each 

instant of tine t, and u(t) is the real measurable control 

■-vector. The coefficients A and B are real constant aatrioes. 

We fix the initial state XQ in the real rector space Rn 

and choose various control functions u(t) on 0 £ t < •» to 

determine the response x(t) as the solution of the initial 

vain« problem 

g « Ax + Bu(t) ,        x(0) « XQ . 

the controllers are arbitrary meaeurable functions with values 

restricted to a prescribed noneapty oonpact restraint set 

II c rf1 . For each time t| > 0 define the eet of attainability 

K (t j) to consist of all endpointe x(t1) to responses initia- 

ting at XQ, for all possible controllers u(t) cftonO<t<<t1 

Def5^ition. Consider the linear control process in R11 

Jl)   i « Ax -i- Bu 

with initial stats XQ at t ■ 0, and oonpact restraint sst 
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ft f Rm . For each compact subset Z c ft we define the set of 

attainability ^(t.,) from x by controllers u(t) c Z on 

0 < t < t1 . We state that Z has the bang-ban^ property in 

case ^(t.,) « ^o^i) for a11 *i 2 0 • 

If 0 is a compact conrex set, then ^(t-,) is also ooapaot 

and conrex. This follows from the rariations of paraaetsr 

fcrania for the response 

x(t> - eAtx0 + e
At J e"A8Ba(s)ds . 

0 
Since the nap 

^1 
uC) - J  e-AB] Btt(s)dE: L. (O.tJ -» R11 

0 1 

is linear and co^act» the properties of conrexitj and 

compactness of ft are shared by K^Ct.,). The following theo 

shows that ^(t^ * ^fft)^*^ ' wliere H^) is tlM eoo*** hull 

of ft . Hence K^Ct.,) is coapact and convex eren if 0 la an 

arbitrary coapact set. 

Theorea 1. Consider the linear control process in B11 

JL)    t « Ax + Bu 

with initial state XQ at t « 0 , and cwpact restraint aet 

ft c Rm, Let Z be a compact subset of A with the same conrex hall 

H(Z) m  H(a) . 

Then Z has the bang-bang property Z^(t|) ■ ^(t^) for all t1 ^ 0, 
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Th« proof of theorem i wae presentefl by L, retwrtaflt [22 J 

MOA lavolTet Intricate fonotlonal analysis and the hnslc 

thsoren of A« Llapounor, which will he discussed In Hectlon 3. 

Corellary 1>    Let Z be the honndary Ml In R".    Then ': has 

Corollary 2«    1st A be > conysx golyhedron In B*, and let Z 

bo tho sst of rsrtlces of XI.    Then Z has the banje-baruc property« 

The theorea of LaSalle corresponds to Corollary 2 in the 

case where A is an a-oube. 

A sowewhat acre general and rery recent result [23] 

asserts that the set of extreae points of H(n) has the bang- 

bang property (eren If this set Is not coapact). 

The conrerse of Theorea 1 cannot hold In general.    ?or 

snpposo B - 0, then any subset of A has the same (unique) 

response and so possesses the bang-bang property.    In order to 

consider processes in which the controls hare eoae reaaonable 

of foot we Introduce the concept of a (coapletely) controllable 

Deflaitioau    Consider the linear process in Sn 

X)    t « Ax + Bu 

with no restraint on the controllers. Suppose for eaoh pair 

of points XQ and a^ in ER there exists a bounded aeaeurable 

controller steering XQ to x1 on sone 0 < t < t.,. Then JL 

la (ooarplotelj) controllable. 

-29- 



■■■'". 

It is well known [14] that X is controllable If and only If 

rank [BtABfA
2Bf...fA^B] « n . 

The condition that the nxnm controllability matrix should 

have maximal rank n is "generic"; that is, every linear procees 

can be approximated by controllable processes and also the 

property of controllability is maintained under perturbation. 

From this algebraic condition it follows that X is controllable 

if and only if ± » -Ax - Bu is controllable, and this obtains 

just in case each initial state x^ € Rn can be steered to tits 

origin in a finite time duration by some bounded measurable 

controller. We prove a slight extension of this result* 

Theorem 2, Consider the linear process In H31 

X) t - Ax + Bn 

with initial state x« at t ■ 0 and compact restraint —t H 

with interior in B0 • Then the set of attainability ^(tj) is 

a convex body (with interior) for each t1 > 0 if gag only If 

rank [B,ABtA
2Bt...fA^Bj « n , 

Proof. 

The set K(t.,) is a compact convex set in B*. First 

that the rank of the controllability matrix Is less than 

Then there is a unit row n-vector v such that 

TB • vAB • vA2B • ... - riP^h « 0 
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Using the Cayley-Hamllton theorem we compute 

TAHB ■ 0 for k « n, n+1, ••• • 

Hence 

YeAtB - 0 for all t > 0. 

Bat KCt,) it the set of all endpolnte 

At,     At- f 1  .. 
«(t-) - e V + e 1 J e"ABBu(s)ds 

1       0      0 

for controllers u(t)cAonO<<t<t1.    Thue 

At, 
vCKCt,) - e    \0]m 0 

and so K(tj) is a translate of a aubaet which lies in the 

hyperplane orthogonal to T. Therefore K{t^)  has no interior 

points« 

Coznrersely aaaume that the controllability matrix has 

rank a • Suppose that K(t.|) has no interior and that there 

is a unit rector v for which 

At 
▼[KCt^ - e     ZQ] ■ 0 i for some t1  > 0 . 

In this case 

J    v e B(u0 + tt(s))ds s 0 

where UQ is a constant in the interior of 0 and u(s) is an 

arbitrary controller near sere. Then» for U(B) ■ 0 we obtain 
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J v e     B u0 da ■ 0 
0 

and so 
-*!  A(tr8) 
J ▼ e     B u(8)dB • 0 • 
0 

Since this equality holds for all small controllers, 

ACt^e) 
ve     B-0 on 0 < s < t- . 

Set s ■ t1 to get TB ■ 0 . Next differentiate with respect 

to s and set s ■ t1 to get v AB « 0. Continue In this way to 

obtain 

yB ■ TAB ■ TA2B - •.. ■ rA^B m  0 

Bat this contradicts the hypothesis that the n rows of the 

controllability matrix are Independent. Therefore K(t.)) is 

a conrex body«  Q.E.B. 

Corollary» The linear process Jl is controllable in Rs (with 

no control restraint) if and only if 

rank [BfAB,A
2B,*,.tA

1,'"1B] - n . 

Proof. 

Assume that the controllability matrix has rank a and 

take the unit m-cube centered at the origin as the restraint , 

set tL   Then« using controllers In A on 0 < t <  1« ws oam M 

steer the origin xa ■ 0 to any point x, la a neighborhood 
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9* By the linearity ot X t r ^ntrollere in kCI eteer ZQ to all 

point! in kH, for k ■ 1f293f... , Thus ZQ can be steered 

to any point z1 € R
n by a bounded controller u(t) on 0 < t < 1. 

Sinot this saae conclusion holds for 

—£) * » -Az - Bu , 

we can rererse the time sense and steer z1 to x0 ■ 0. HenceX 

is controllable. 

Hszt assume that the rank of the controllability matriz 

is less than n. In this case there is a nonranishlng vector 

T such that 

TB « TAB - VAS •   ... - Tk*'1*  m   0 . 

But this implies that veAtB ■ 0 and so 
t. 
T 1 A(t1-B) / x T J e     Bu(s)ds m  0 . 

Henoe the origin ZQ ■ 0 can be steered only to points in the 

hyperplane orthogonal to T, and X. fails to be controllable. 

Q. B. B. 

Theorem 3. Consider the controllable process in R11 

X) i - Az + Bu 

with initial state ZQ at t ■ 0, and compact restraint set i) 

with interior in R111. Assume rank B ■ m. Then a compact subset 

Z c n has the bamt-bang property if and only if H(Z) ■ H(Ü). 
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Proof, 

By theorem 1 a compact subset Z with H(Z) ■ H(fl) has the 

bang-bang property, and we prove the converse under the above 

hypotheses. 

Assume H(Z) / H(Cl) so that there exists a point in H(n) 

which is separated by a hyperplane from H(Z). Thus there exists 

a supporting hyperplane ic to H(n) such that n  fails to meet H(Z), 

Now let PQ be a boundary point of K^Ct.,) « ^E(Q)^0*  'or 

any fixed t1 > 0. Let T)Q be any external unit (row) vector 

normal to a supporting hyperplane to K^Ct.,) at PQ. Then 

any controller UQU) <= H(Q) on 0 £ t < t1 which steers XQ to 

PQ necessarily satisfiss 

Ati      Ati r*1  A. 
T|0[e ^XQ + e  ' J e"ABB u0(s)ds] 

I 
0 

where u(t) c H(n) is an arbitrary controller. Thus u0(t) 

satisfies the maximal principle [4] 

1  At 1   At 
T)« e 'e "^ Bun(t) •  max  TU e   e   Bu » 
0 0   u 6 H(fl) 0 

almost always on 0 < t £ t1 • 

Consider the linear map of Rn Into R* 

t) -♦ t) B . 

Since rank B « m, we can find a (row) vector i|1 ■«eh that 
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'1  -A + 
T)1 e 

1 e AXBu 

ri^B is along the outward normal to the hyperplane n. This 

■•ans that 
At, 

max   n. e 
u € H(A) 

assumes its maximum» for each t near t.,, only on H(ft) - H(Z). 

Let P1 € d K^Ct^) be a point where T)1 is an outward 

directed normal to Kpft.,), Then P1 cannot be attained by any 

Controller restricted to H(Z), since any such controller cannot 

satisfy the necessary maximal principle. Therefore KgCtj) t 

K-Ctj) and Z fails to hare the bang-bang property.    Q.E.D. 

Corollary. If fl is also eonyex, then a compact Z c ft has the 

bamt-bang property if and only if Z contains all the extreme 

points of ft. 

3. A. Liapoonoy's theorem and some generalisations. In this 

section we present a discussion of liapounov's theorem on the 

oonrexity of the range of a vector measure. 

Let y(t) be a bounded measurable n-yector function on 

0 < t < 1. Let3 be the o-algebra (Borel (r-field) of all 

Lebesgae measurable subsets of 0 < t <. 1. 

Ihsorsm 4 (A. Liapounoy). Tor each set B 62 consider the 

point in H 

I Xj. - J y(t)dt , 
E 

and lei I be the set of all such points Xg. Then K is oonysx 
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and compact» 

Proof (sketch). 

First construct a continuous family of sets ^a ^3 

0 < a < 1 with D c I)  if and only if a, < a9,  and the 

Lebesgue measure of D is 

Such a continuous family is easily obtained [6] as a maximal, 

linearly ordered (by inclusion) chain of sets In 3» with the 

aid of the axiom of choice. 

We use D and the first component y.j(t) of y(t) to 

construct a calgebra A, c-S whereon 

r r1 
* y1(t)dt - |»(E) J y1(t)dt . 
E 1 0  1 

To construct A1  first take E1 € JJ whereon 

E 
y1(t)dt - 7 

1   f1 

? J y1(t)dt, ^(E,) . 7 . 
i 

The existence of E1 follows from the properties of the family 

D . Hamely, 

u(Da - Vl/a^ " 
1/2 o* V2 <a <1 

.: ■!,■ 

and the integral of y.j(t) over (Da - 
D
a.i/2) 

i8 * eontlimoiui 

function /(a) such that' 

2 0  1 
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Thus for some Intermediate a« on 1/2 < a < 1 we obtain 
f1 i      -  - 

/(o^) ■ 1/2 J y1(t)dt t as required. 

Next partition E1 and Eg « [0,1] - E1 into two appro- 

priate subsets E.t E. and Eg, Eg on each of which 

J y1(t)dt - 4 1 y1(t)dt , ^(E) . 1/4 . 
E 1      4 0 1 

Continue this partitioning to obtain a countable collection 

of such sets E and then let A. 1 be the tr-algebra generated by 

all these ssts. Since J y1(t)dt and |i(E) are each signed 
E  ' 

measures defined on A^, and since they are equal (up to a 

constant factor) on the algebra generated by the above 

countable family E1f Eg, E,, E., Eg, ^g, ••• , we obtain 

r f1 
J y1(t)dt . n(E) J y1(t)dt , 
E ' 0  1 

for all S € -A^ 

Next repeat the above argument to select c-algebras 

4L n c An-1 c ... c A1 c J such that 

J y(t)dt ■ u(E) I y(t)dt 
E 0 

t, 

for E € JK. n 
Finally we prove the convexity of the set K. Suppose F1 

and ?2  are in 2    with 

J y(t)dt ■ a, , J y(t)dt ■ a9 , 
*1 F2 

and .consider the intermediate point 

Xa1 •«■ (1-X)a2 , 0 < X < 1 . 
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Consider the 2n-vector 

y(t) X^t) 

y*(t) - 7(t) X2(t) 

with the characteristic functions X-jCt) of P1 and X2(t) of t2* 

Let -A c3 be a a-algebra whereon 

' y»(t)dt • M(E) J y*(t)dt . »»(B) L.1  . 
E 0 L a2 J 

Let D with HC^Q) « a be a continuous fanlly of sets in A and 

'sflne 

p . (DX n P^ u [([0,1] - \) np2J . 

Then 

J y(t)dt » J y(tjx1(t)dt +  I  y(t)X2(t)dt P        \ [0,1]-!^ 
so 

r 
J y(t)dt - Xa, + (1-\)a2 , 
P 1      c 

and hence K Is convez. 

The ooapaotness follows from arguaents of fonotional 

analysis which we shall not Indicate here.      Q.B.D* 

Reaarts. Let us Indicate the proof of the coxnrezlty of ^(t^), 

as In theorem 1. Let ua(t) and u^Ct) c A oa^ i 0 ^ t J^ to 

two controllers with responses za(t) and x^Ct) Initiating 

at zM when t « 0. Por each oeasurable subset J> c%P ooasider o • • 

the real 2n-Tector 
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[{ e-A8 B ua(8)fl8 
w(1)) " 1 r -As 

The ▼•ctor-Talued 80t function w(D) has values 

wCD) 
ra ^ and w(jrf) [•I- 

By Uapounor*« theorem there is a set "Dy c^Pfor which 

w(B,) 
a 

and w(J-D. ) - (1-X) [::]■ 
Define the controller, for 0 £ X £ 1 , 

^(t)    for t € ])x 

■ ^(t)    for t 6J -Dv 

Then the corresponding response leads to 

At, At 
^(t.,) « e     x0 + e ■k e"1^ Bu (s)ds « J e"A8 Bub(s)ds 

ftarns KßCtj) is conrez for an arbitrary compact restraint set 0, 

We note that the bang-bang principle, say in the case of 

a oomrez polyhedron 0, merely asserts that the required control 

cam be attained by a controller resting at each vertex of A 

for some measurable duration of time. It is of great interest 

to find bang-bang controllers which are piecewise constanti 

whloh have only a finite number of switches rather than a 

complicated measurable switching set. Such results have been 
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obtained by H. Halkln [9f10,11] and N, Lerinson [18],  In 

their analyses the coefficient matrices A(t) and B(t) can 

vary analytically with time and need not be constant« For 

arbitrary integrable coefficient matrices the bang»bang 

principle holds, but the switches may well be necessarily 

infinite. 

Another interpretation of the bang-bang principle 

restricts the controllers to be extreme functions rather than 

functions with Talues in the set of extreme points of A. That 

is, let fl be a compact convex set in B11 with extreme point set 

W. Then theorem 1 asserts that W has the bang-bang property, 

Kjt,) ■ KjjCt^ for t, > 0 • 

The set HQ of all measurable controllers (almost always) in Q 

is a weak * compact, convex set in the space 1 of all essen- 

tially bounded measurable m-rector functions on^tO^t^t*. 

A theorem of S. Karlln [15] asserts that the extreme points 

of the set M0 are among the controllers having values in W. 

If W « W, the extreme points of IL^ are precisely the controllers 

in W. 

4* Nonlinear banje-baiue phenomena. Consider the nonlinear 

control process 

J)  x . f(x,u) 

where f(x,u) f C in R1"*. The stats x(t) at each time t is 
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a real n-reetor and the control u(t) is a Beaeurable m-rector 

funetioa with Taluea in a one restraint eet Q c jp.   We seek 

to steer an initall state ZQ to the origin z1 • 0 in sons 

finite tiae interral 0 jC t < t1 by a controller in f\.    Since 

the process is nonlinear, the response z(t) to a controller 

n(t) cOonO£t<t1 sight not ezist for the entire duration, 

and hence it is reasonable to consider Just strictly local 

control probleas for short tine durations. 

ISzarole« Consider the scalar process in n* 

•      2 Z « U -f u 

with restraint ft; |u| < 2. Then, since the linear approzina- 

tion near z » u « 0 is the controllable process z « u, each 

point ZQ near z1 » 0 can be steered to the origin by a controller 

in tL    Howerer, if we use only bang-bang controllers with 

|u(t)J « 2, then z(t) > 0 and ao points ZQ > 0 cannot be 

steered to the origin. 

The difficulties illustrated by the above ezaaple are 

resolTed by the following theoren [20,21]. 

Theoren 5. Consider the control process in R11 

J) z • f(z,u) in C» in H1"11. 

1) f(0,0) - 0 
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2) rank [BfAB,A
2Bf...fA

n~1B] = n 

where A « -I^u»ü' and B « Ä„ 
     dz         au 

Let %  be a fixed conrex poXytope with the orligia in It« 

: terior in IT1, Then there exiets an e > 0 and a nej 

TT of x1 «0 such that; 

each initial atate XQ € IT can be st«er»d to x1 • 0 

by a neaegrable controller u(t) en 0 £ t £ 1 witii 

only in the finite set of rertiee« of the ainilar poVrtaw c«. 

finally let us turn to the nonlinear global control ftrobl«« 

with bang-bang controllers. To insure global stability about 

the origin x1 « 0 we Impose the classical hypothesis of A. 1. 

Llapounor. The bang-bang analysis is treated by the astkods 

of A. LiapounoT. In this Banner we are abls to obtain the 

following result. 

Theorem 6.  (Liapounor-LiapounPT). Considsr ths coatrol 

process in R11 

J)    * -  f(xtu) in C« ifi tf14* . 

Assume that there exists a real fteotion T<x) la C* JÜ| iP 

such that: 

1) y(x)  > 0 for x ^ 0 and T(0) - 0 

2) lim y(x) -- 
|x| ^« 

3)   H   ^(x.O) < 0 for x ^ 0 . 
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Al«o »■■une 

4) f(0,0) - 0 

5) rank [B,ABfA
2Bt...,A

n-1B] - n 

—I-   8«   —   au 
T^n thTt »xltta an e > 0 suoh that trary Initial point 

XQ € R11 can |M| af arad to x-j ■ 0 In a flnlta time by a MeaBttr» 

abla oontrollar u(t) each of whose ooaponanta take» on only 

the three raloee -»-e, -e» and 0 . 

: ;■ 

-^3- 

• .   . ■ 

•; A 



■i-ii- 

BIBLIOaRAPHY 

1. Bellman, R., Glloksberg, T., Grose, 0., On the "bang-bang" 
control problem. Quart. Appl. Math., Vol. U (1956), pp. 11-18. 

2. Blackwell, D., The range of certain vector integrale, PAHS, 
Vol. 2 (1951), pp. 390-395. 

3* Caetalng, Sur une extension du theoreme de Lyapounor, C. R. 
Parie 260, pp. 3838-3841. 

4. Boltyanskl, Y., Ganücrelidee, R., Hishchenko, E,, Pontryagin, 
L., The mathematical theory of optimal prooeseee, 

5. Dvoretsky, A., Wald, A., Wolfowite, J., Relation« among 
certain rangee of vector meaeuree, Pao. J. of Math. (1951)« 
pp. 59-74. 

6. Fattorini, H., Time optimal control of eolutione of opera- 
tional differential equations, J. SIAM Control, Vol. 2 (1964), 
pp. 54-59. 

7. Filippov, A», On certain queetions in the theory of optimal 
control, J. SIAM Control, Vol. 1 (1962), pp 76-84. 

8. Halkin, H., On the neceeeary condition for optimal control 
systems, J. d,Anal. Math. 19 (1964), pp. 1-82. 

9. Halkin, H., A generalisation of LaSalle'e "Bang-Bang" 
Principle, J. SIAM Control, Vol. 2 (1965), pp. 199-202. 

10. Halkin, H., On a generalisation of a theorem of lyapounor, 
J. Math. Anal, and Appl., (to appear) 

11. Halkin H., Some further generalisations of a theorem of 
Lyapounor, Arch. Rat. Mech. Anal», (to appear)« 

12. Halmoe, P., The range of vector meaeure. Bull. Am. Math. 
See, Vol. 4 (1953), pp. 603-610. 

13* Hermee, H«, A note on the range of a vector measure | 
application to the theory of optimal control. RIAS Tech. 
report (1963). 

14. Kaiman, R., Ho, Y., Narenda, K., Controllability of linear 
dynamical Systeme, Contrib. of Biff. Eq., Vol 1 (1962). 

15. Karlin, S., Extreme points of vector functions» PAMS, 
Vol 4. (1953), pp. 603-610. 

-44- 

,„.,.j\.mm 



'.\ 

■ ■ 

16« LaSalle, J., The time optimal control problem, Contrib. 
to Nonlinear Oscil., Vol. 3, pp. 1-24 (1960). 

17* lee-Markus, Foundations of Optimal Control Theory (to appear 
J- in  1966). 

18, LeTineon, F., Hlnimax, Liapounov and "bang-bang", HIT J. 
(to appear). 

19* LiapounoT, A., Sur lee fonctione-vecteure completment 
additivee. Bull. Aoad. Sei. USSR, Vol.4 (1940), pp. 465-478. 

20« Markus, L«, Controllability of nonlinear prooesees, SIAM 
Control J., Vol. 3 (1965). 

21. Markus, L., Controllability and Observability. Froc. of 
Symposium on Optimal Control in Ravello (1965). 

22. Heustadt, L. ,• The ezlstenoe of optimal control in the absence 
of ooBTSZlty, J. Math. Anal, and Appl., Vol 7 (1963), 
pp.   110-117. 

* 23.    Sonnebom, L., Van Vleok, ?., The bang-bang principle for 
linear control systems, J. SIAM Control, Vol. 2 (1964), 
PP.  (151-159). 

24. Bfttko, R., A general bang-bang principle and bang-bang 
approximations.  J.  SIAM Control, Vol 10 (1965), pp 284-294. 

25, falb, P., Infinite dimensional control problems I.J. Math. 
An. and Appl., Vol.  9 (1964)» pp.  12-22. 

-h5- 

M ■'-— 



Secu rity Cla ssific a t ion .. 
DOCUMENT CONTROL DATA - R & D 

( Security c-la s&llicat lon o f title. hf>fly o l nb:ttrnct o n d indexing nnnot1ttlnn mu"''l /)e entered when the ove roll report I s c laa• llle"l_ 1111'1 

I. ORIGINATIN G A C TIV I T V ( Corpo t Dtf' Duthot) Zit, REPORT :.ECUAITV CLASSIFI CATION 

George town University 
Department of t-1a thematics 
Washington, D. C. 20007 

3 . REPOR T TITLE 

LECTURE SERIES I 'N DIFFERENTIAL EQUATIONS 
SESSION 1: CONTROL THEORY 

UNCLASSIFIED 
2b. G R O UP 

_.;. ,. .. 
't . . ... 

' 

.. 

... . 
~ 

·i 
'l 

· ~ 1 
4. DES C RIPTIVE N O TES (Type o l reporl ond Inclus i ve dates) 

Scienti f ic Interim 
s . A U THOR ! Sl (Fit 5t n a m e, middl e Initia l, / a5t n a m e) ,,.. i. 
George B. Dantzi g, Solomon Lefschetz, Lawrence Harkus ~ 

' : 
'1 • i.. 

November 1965 48 
17b. ;;· OF REFS ~ 

a . REPORT DATE 7a. TOTAL NO . OF PAGES 

ea. CONTR ACT OR GRAN T N O. 

AF-AFOSR 984-66~ 
VD. ORIGINATOR'S REPOR T NUMBER(S} 

9749-02 
No. 1 b. PROJ E C T N O . 

c . 
6144501F 

Vb. OTHER REPORT NO(Sl (Any other numbet$ that may be attttl(lfl*l 
this tepot l) ~ 

d. 681304 P."5'0SR 65-1886 
' s. Each transmit t al of :l; is do.:n~ms-:;.t ::- :_~ :;: :.c· -::.:: ~ -· = .. .: .~ ::.5 c~ th.3 ·-' 

u. S. Government must have p.:-ivr c~:)~! · ;;.-;.:.:1 or :._. -:.:.:!t \ S.·:.:~). 

11 . SUPPL EMEN T ARY NOTES 12. SPONSORING MILITARY ACTIVITY 

TECH, OTHER . Air Force Office of Scientific Research ·(~ 
' 1400 Wilson Boulevard · ~ 

Arlington, Virginia 22209 .... 
13. A~~TRACT 

· ?Thts Scientific report surcnnarize s the three lectures presented at t he First Session 
of the Lecture Series in Differential Equations~ sponsored by the AFOSR, and the 
Graduate Consortium of American, Catholic,.Georgeto,ro , George Washington and Howard 
Universities of the District of Columbia and the Univers ity of Maryland, and he ld 
at Georgetown University, 2 October 1965. 

The First Session , on Control Theory , included lec tures by Professors G. B. Dantzig. 
S . Lefsch~tz and L. Markus . Profe ssor Dantzig illustrated how mathematical pro­
grarcnning, in~ particular a generalized l inear program, can be appl ied to a linear 
contTol proces s . The "problem" t akes the form of minimizing t he "cost" of moving 
an "object" from one convex domain to another by proper choice of a control vector 
and boundary condi t ions. 

Professor Lefschetz dealt with the Lurie problem on nonlinear controls , i.e., the 
determina tion of necessary and sufficient conditions such that all solutions of a 
set of general nonl inear control differential equations are absolutely stable in 
the large whateve r the choice of the admissible (function) charac teristic o f the 
contr o l . 

·' 

.! . 
-, 

... 
Professor Harkus discussed the "bang-bang" theory of con trol as a physical concepc · ~ 
and as a collec tion of precise mathemat ical theor~.ns. The b~g-bang principal s tat~~ 
that any response o f a con t rolled system which can be achieved by an arbitrary con- · -~ 
trolle r restricted to the extreme values of tl.e control domains. Theorems presented 1 

relate both to linear a~d nonlin~~r control processes. 

Security C las s ific atio n 



--'-' ' 
. ·. '~ .. _.§ecurity Clanlfication • . -
14. - -- LINK A LINK B LINK C , ... -.. KEY WOROS 

ROLE WT ROLE WT ROLE WT 

ordinary di ffe rential equations ~· 
linear ordinary di~ferentia l equa tions 
nonlinear ordinary dif ferential equ~!=ions ' 

control t heory 
mathematical programming . 
"bang-bang" theory of control 

~ 
1: 

11 I 

I-
' I ~ 

~ ~~ 1 
t ;:~· 

t • ~ 

1~-
" 

it. 
I~ 

'·' 

I~ . i 

- . '· 
.~ 

~ 
I . ' 

.A· 
h· •, 

_.; 
·; 

" . 
i"- ~-i 

~ ; ( 

. 

l 
.I 
·~ 

,, . 
. ' 
-

' - l 

; --
~ 

L• 

!,~__:i 
i 
~. 

1u· Security Classification ' 
~ I 


